NASA Targets Coastal Ecosystems with New Space Sensor

NPNews24: NASA has selected a space-based instrument under its Earth Venture Instrument (EVI) portfolio that will make observations of coastal waters to help protect ecosystem sustainability, improve resource management, and enhance economic activity.

The selected Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR) instrument, led by principal investigator Joseph Salisbury at the University of New Hampshire, Durham, will provide unique observations of ocean biology, chemistry, and ecology in the Gulf of Mexico, portions of the southeastern United States coastline, and the Amazon River plume – where the waters of the Amazon River enter the Atlantic Ocean.

“This innovative instrument from the University of New Hampshire, selected by NASA, will provide a powerful new tool for studying important ecosystems,” said NASA Administrator Jim Bridenstine. “Its findings also will bring economic benefits to fisheries, tourism, and recreation in the coastline area.”
The instrument was competitively selected from eight proposals considered under NASA’s fifth EVI solicitation released in 2018, with an award of $107.9 million. This is the largest NASA contract award in the history of the University of New Hampshire. Salisbury and his team have proposed the instrument as a hosted payload, for which NASA will provide access to space.

Coastal ecosystems support humanity in many ways, but they are under increasing pressure from the effects of land use activities, population growth, extreme weather events, and climate change. These pressures can give rise to more frequent, expansive and harmful algal blooms, as well as create areas where dissolved oxygen is severely depleted – both of which are detrimental to tourism, fisheries, and human health.

GLIMR will be integrated on a NASA-selected platform and launched in the 2026-2027 timeframe into a geosynchronous orbit where it will be able to monitor a wide area, centered on the Gulf of Mexico, for up to 15 hours a day. From this vantage point, the hyperspectral ocean color radiometer will measure the reflectance of sunlight from optically complex coastal waters in narrow wavebands. GLIMR will be able to gather many observations of a given area each day, a critical capability in studying phenomena such as the lifecycle of coastal phytoplankton blooms and oil spills in a way that would not be possible from a satellite in a low-Earth orbit. Given its unique spatial and temporal resolution, GLIMR will be highly complementary to other low-Earth orbit satellites that observe the ocean.

“With GLIMR, scientists can better understand coastal regions and develop advanced predictive tools for these economically and ecologically important systems,” said Thomas Zurbuchen, associate administrator of the Science Mission Directorate at NASA Headquarters. “As part of NASA’s commitment to Earth Science, I am thrilled to include this instrument in our portfolio as we keep an eye on our ever-changing planet for the benefit of many.”

The first two Earth Venture Instruments were launched in 2018 and are operational on the International Space Station. The Global Ecosystem Dynamics Investigation (GEDI) is measuring the vertical structure of forests, canopy heights, and their changes – on a global scale – providing insights into how forests are affected by environmental change and human intervention. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is measuring the temperature of plants – information that will improve understanding of how much water plants need and how they respond to stresses such as drought.
Attachments area

Comments are closed.